
IBM Instana

Observability
for developers
What is observability?

Contents 01 →
Introduction

02 →
What is observability?

03 →
How to achieve full
end-to-end observability

04 →
Observability standards
and open source

05 →
SLO methodology

06 →
Beyond open source

07 →
Is IBM Instana
right for you?

3Next chapterPrevious chapter

01

Introduction

Developers are faced with a growing
challenge: How do we troubleshoot software
that may be comprised of many disparate
services running in a variety of languages
and platforms? How can we notice critical
changes, see into our black box services,
and discern the true causes of errors?

Not too long ago, debugging a program
usually meant one thing: browsing error
logs. This approach was fine for small
teams running simple, local programs
in a small number of instances.

But things in IT are always changing.
Software architecture paradigms have
evolved from monoliths to microservices.
Developer responsibilities have changed with
the emergence of DevOps, which represents a
shift in the way developers take responsibility
for programs after delivery.

The origins of observability
The term observability was first defined
for engineering purposes in R.E. Kalman’s
1960 paper titled “On the general theory
of control systems.”1 The term observability
as it pertained to mechanical engineering was
defined as the ability to understand the inner
state of a system by measuring its outputs.

Fifty years later, developers and software
professionals were still monitoring their
systems using tedious instrumentation
tools—if they were monitoring at all. As far
back as 2013, the shift toward distributed
systems was already underway. That’s when
X (formerly known as Twitter) announced
they were creating a new “observability
team” to centralize and standardize the
collection of telemetry data across Twitter’s
hundreds of services.2 The term observability
enters the mainstream.

4Next chapterPrevious chapter

Introduction

Observability today
Over a decade later, IT teams continue to
face services that are even more granular
and job responsibilities that are more cross
functional. Microservices are giving way
to serverless, with DevOps leading to site
reliability engineering (SRE). Observability
is as important as ever and the scope of the
challenge is growing exponentially.

02

What is observability?

Scientific definitions aside, observability in
software development is looking at what’s
happening inside an application or system—
and identifying what we’re seeing. In short,
observability is visibility plus understanding.

Modern distributed software systems
absolutely require observability tools.
There’s simply no other way for a developer
to constantly monitor the complexity that
comes when you break applications into
many tiny pieces. Luckily, this complicated
architecture is also the very thing that allows
observability tools to exist.

Software systems enable unified
observability because services typically
have a universal control plane and rely on
common languages such as HTTP, RPC or
something else to communicate with each
other. In addition, it would be difficult to
imagine relying on outdated logs to keep
IT operations running smoothly.

5Next chapterPrevious chapter

6

What is observability?

How is observability different
from monitoring?
You can’t get a true picture of where you’re
going if you don’t know where you’ve been.
Application performance monitoring (APM)
is an important set of capabilities that
coexist with modern observability.

Traditional monitoring focuses on measuring
predefined aspects of known components.
That was a big idea in the 1980s, but the
distributed architectures today include
application components that are always
changing, sometimes every second.
Traditional APM tools simply can’t keep up
with this fast-moving, dynamic environment.

Obviously, the worst time to discover
you’re missing some crucial metric is when
you’re in the middle of triaging a production
outage. This is where observability becomes
critical. Instead of predetermining what to
measure, observability tools see everything
that’s happening between, and even
inside, services. This functionality lets you
answer questions you couldn’t have even
anticipated—such as when you confront
unknown unknowns.

Next chapterPrevious chapter

7

What is observability?

Monitoring can be useful. Sometimes.
Monitoring tools and metrics-based
alerts are great for answering basic
questions such as:

– Is my service online and available
to customers?

– What % of requests have errors?
– What is the average latency of a request?
– How much memory is Redis using?
– Do I need to make a linear scaling action?

However, in the course of maintaining
healthy applications, we often need to be
able to answer deeper questions like these:

– Are users experiencing any errors along
business-critical paths?

– Why is the error rate dramatically higher
for this specific subset of customers?

– Where is the bottleneck in the system
causing latency for a specific endpoint?

– What else changed within my system
that could be causing this error?

– What service do I need to update
to fix this error?

Next chapterPrevious chapter

03

How to achieve
full end-to-end
observability

Answering those deeper questions
requires building a system that monitors
the complete lifecycle of a user request—
from the client to the persistence layer.
For application developers, this means
instrumenting clients and backends to
emit useful telemetry data.

Once we have this telemetry, we need to
collect it, process it, store it and analyze it in
order to turn the data into useful, actionable
insights. Typically, an agent or collector
gathers the telemetry signals and forwards
to a database for storage. Time-series and
columnar databases play a very important
role in the efficient storage and querying of
metrics data.

Finally, for analysis and insights, a UI is
required in order to query the database.
This will allow the data to be displayed as
graphs and dashboards. Alerts also need to
be configured to quickly notify devs if there’s
a problem including automated root cause
analysis and smart alerts.

The telemetry signals
These are the data formats used to collect
information from application services.

– Traces: Rich, request scoped timelines
– Events: Structured logs tracking external

changes like deployments
– Metrics: Aggregable numbers about

events or systems

– Profiles: Run-time level metrics
– Logs: Timestamped records of events
– Exceptions: Structured logs for

tracking errors

It’s important to keep in mind no one signal
or set of signals constitutes observability.
However, distributed tracing is arguably the
most important signal in observability.

8Next chapterPrevious chapter

What are distributed traces?
Most every developer is familiar with stack
traces—they pop up every day in error
logs. But distributed tracing is what you get
when the function calls of a single service
are replaced with the network calls of a
distributed application.

Distributed traces are made up of “spans”—a
derivative of timespans. Each span includes a
start time, an end time, any number of custom
attributes and a reference to its parent span.
Whenever a service processes a request, it
creates a span that references the span from
the calling service. This is received through
the request headers following the W3C Trace
Context specification.

Custom spans can also be created to add
more granularity to the trace within a specific
service. For example, if there’s a function
that does a lot of processing after receiving
results from a database, it might be helpful
to enclose that function in a custom span.

But traces are more than just timelines.
They’re also about much more than just
latency. By tracing the path of individual
requests, you can contextualize logs,
metrics and other signals in a way that
helps answer questions from a user-centric
(request-scoped) point of view. Traces
include a data structure that helps you:

– Understand request flows through
the entire system.

– Instantly visualize your system topology.
– Derive metrics from the richness

of trace metadata.
– Enrich logs with context by attaching

them to a specific span.

9

How to achieve full end-to-end observability

Putting it all together
While these signals are sometimes useful
in isolation, you can get the most valuable
answers when all of this data can be
correlated and searched in a meaningful
way. Peter Bourgon, the well-known
software engineer, elegantly laid out the
crucial sweet spot for information where
metrics, traces and logs overlap.3 The results
are request-scoped, aggregable events.

Next chapterPrevious chapter

04

Observability
standards and
open source

10Next chapterPrevious chapter

In 2019, the OpenTracing and OpenCensus
projects merged and became OpenTelemetry.
This Open Source project under the Cloud
Native Computing Foundation (CNCF) is
quickly establishing open standards for
telemetry that are widely adopted by both
open-source tools and vendor observability
platforms that include IBM® Instana®.

The OpenTelemetry project works in three
areas to simplify the collection of telemetry
data: specifications and standards,
instrumentation tools, and pipeline tools.

The specifications include:

– OTLP—a binary format for efficiently
representing metrics traces and logs.

– The W3C Trace Context specification
for propagating a parent traceId to
downstream services.

– Language APIs that you can call from
your application or library code.

The instrumentation tools include:

– Language SDKs that connect the Language
APIs to specific implementations. These
can be either so-called standard ones
or plugins provided by a community
or vendor and used for processing and
exporting telemetry.

– Auto-Instrumentation libraries that
automatically call the Language APIs
when relevant events occur within your
framework or library.

And finally, for processing and transmission,
there is the OpenTelemetry Collector. This
expansive tool can act as an agent on your
node to collect and forward all telemetry data.
There is also a large ecosystem of receivers,
processors and exporters available as plugins.

Open-source observability backends
The OpenTelemetry project does not provide
a backend for storing and analyzing your
monitoring data but a number of open-source
tools are compatible with the OTLP signals.

The OpenTelemetry Demo project provides
an example microservices application
that can be run in docker or Kubernetes.
It includes three two open-source telemetry
databases: Prometheus for metrics and
logs, and Jaeger for traces. It also includes
Grafana for visualizing some of the metrics
from Prometheus.

05

SLO methodology

11

By now, you’ve probably been hearing a lot
about service level objectives (SLOs) and
service level indicators (SLIs).

SLO methodology represents a new
way to think about software performance
and health that goes hand in hand with
observability. Observability as a concept
comes from control theory, which focuses
on the optimal—not perfect—operation
of machines. SLO methodology teaches
that IT teams who strive for perfection often
achieve worse outcomes than when setting
realistic targets.

It all starts with service level indicator. An SLI
is any metric or statistic that can be converted
into a percentage. In the context of running
software, SLIs are things like the percentage
of requests that were served successfully
or the percentage of requests that had
acceptable latency.

An SLO is a target bound for an SLI. SLOs
are often expressed as a certain “number
of nines.” For example, 4 nines would indicate
that an SLI meets the target 99.99% of the
time. Very importantly, SLOs should never
be “100%.” This is unrealistic in almost
every situation. It’s best to leave yourself
an error budget—some leeway for planned
and unplanned outages.

In fact, one team at Google found that they
could increase overall system reliability
by artificially causing downtime for their
service in order to prevent other teams
from expecting it to be 100% reliable.3
It is not recommended to replicate this
in your organization.

Next chapterPrevious chapter

12

SLO methodology

↓
Service level agreements or SLAs may
appear to be similar to SLOs, but they are
used for very different purposes. An SLA is
part of a business contract and it specifies
what happens if the target is violated—
usually a financial penalty of some kind.

SLAs are not interesting to developers
until they are violated. SLOs are extremely
useful to developers because they help
you understand the overall reliability of
applications and to determine if it’s safe
to invest in new features.

Next chapterPrevious chapter

06

Beyond open source

13

With the open-source tools from the previous
chapter, you can gather a lot of telemetry data
from services and begin to put it together
in a useful way. However, it’s difficult to say
that you have truly achieved observability.

Observability demands that you can answer
questions about unknown unknowns. Your
telemetry should be able to adapt and change
as your services do. So far, no open-source
tool can provide that level of automation.
But a solution such as IBM Instana can.

Observability solutions are adaptable
and dynamic
Your applications are likely comprised of
dozens, hundreds or even thousands of
services using different languages and
technologies. Maintaining consistent
manual instrumentation across the
entire application’s surface area would
be virtually impossible.

By relying on automations such as
dynamic service discovery and automatic
instrumentation, you can achieve a much
more complete understanding of your
systems before incidents occur. That’s
because while you’re in the middle of
triaging a production outage is not the
time to discover that you’re missing a
key piece of the puzzle.

Next chapterPrevious chapter

14

Beyond open source

The automatic correlation benefit
A major benefit of an enterprise observability
solution is the ability to correlate machine,
infrastructure, and application or services
metrics and traces. Distributed traces
deliver an understanding of the request’s
flow, while metrics provide the necessary
performance points. Correlating these
manually, however, is quite cumbersome.
The main reason people hate having
multiple dashboards for different services
is that it can be almost impossible to match
any data and gather the overall context of
the issue.

The biggest benefit of automatic correlation
is the immediate insight. When looking at
an issue or incident, the solution does all
the detective work. This provides important
pieces of information as contextual evidence
and leads you right to the area of interest.

Next chapterPrevious chapter

07

Is IBM Instana right for you?

15Next chapterPrevious chapter

IBM Instana is an enterprise observability
platform that includes automated
application performance monitoring
capabilities. It’s designed for businesses
operating complex, modern, cloud-native
applications no matter where they reside—
on premises, in public and private clouds, on
mobile devices or in an IBM Z® environment.

IBM Instana helps you control modern
hybrid applications with AI-powered
discovery of deep contextual dependencies
inside hybrid applications. IBM Instana
also provides visibility into development
pipelines to help enable closed-loop
DevOps automation.

These capabilities provide actionable
feedback needed for clients as they optimize
application performance, enable innovation
and mitigate risk. These features help
DevOps increase efficiency and add value to
software delivery pipelines so they can meet
their service and business-level objectives.

See the power of IBM Instana for yourself.
Sign up today for a free 14-day trial of
the full version of the product. No credit
card required.

IBM Instana free trial

Explore IBM Instana

https://www.ibm.com/products/instana
https://www.ibm.com/products/instana
https://www.ibm.com/products/instana/application-performance-monitoring
https://www.ibm.com/products/instana/application-performance-monitoring
https://www.instana.com/trial/
https://www.ibm.com/products/instana

16

1. R. E. Kalman, “On the general theory of control
systems,” August 1960.

2. Twitter blog, “Observability at Twitter,” 9 September
2013, Accessed July 2023.

3. Google online SRE book, “Service Level Objectives,”
Accessed July 2023.

© Copyright IBM Corporation 2023

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
August 2023

IBM, the IBM logo, IBM Z, and Instana are trademarks
or registered trademarks of International Business
Machines Corporation, in the United States and/or
other countries. Other product and service names
might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on
ibm.com/trademark.

This document is current as of the initial date of
publication and may be changed by IBM at any time.
Not all offerings are available in every country in which
IBM operates.

It is the user’s responsibility to evaluate and verify
the operation of any other products or programs with
IBM products and programs. THE INFORMATION IN
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
WITHOUT ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT.
IBM products are warranted according to the terms
and conditions of the agreements under which they
are provided.

https://www.ibm.com/legal/copytrade
https://www.sciencedirect.com/science/article/pii/S1474667017700948
https://www.sciencedirect.com/science/article/pii/S1474667017700948
https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter
https://sre.google/sre-book/service-level-objectives/

	Button 469:
	Button 470:
	Button 505:
	Button 506:
	Button 467:
	Button 468:
	Button 532:
	Button 533:
	Button 534:
	Button 535:
	Button 417:
	Button 418:
	Button 536:
	Button 537:
	Button 437:
	Button 438:
	Button 530:
	Button 531:
	Button 538:
	Button 539:
	Button 528:
	Button 529:
	Button 540:
	Button 541:
	Button 520:
	Button 521:
	Button 414:
	Endnote 6:

